Autonomous Navigation Airborne Forward-Looking SAR High Precision Imaging with Combination of Pseudo-Polar Formatting and Overlapped Sub-Aperture Algorithm
نویسندگان
چکیده
Autonomous navigation airborne forward-looking synthetic aperture radar (SAR) observes the anterior inferior wide area with a short cross-track dimensional linear array as azimuth aperture. This is an application scenario that is drastically different from that of side-looking space-borne or air-borne SAR systems, which acquires azimuth synthetic aperture with along-track dimension platform movement. High precision imaging with a combination of pseudo-polar formatting and overlapped sub-aperture algorithm for autonomous navigation airborne forward-looking SAR imaging is presented. With the suggested imaging method, range dimensional imaging is operated with wide band signal compression. Then, 2D pseudo-polar formatting is operated. In the following, azimuth synthetic aperture is divided into several overlapped sub-apertures. Intra sub-aperture IFFT (Inverse Fast Fourier Transform), wave front curvature phase error compensation, and inter sub-aperture IFFT are operated sequentially to finish azimuth high precision imaging. The main advantage of the proposed algorithm is its extremely high precision and low memory cost. The effectiveness and performance of the proposed algorithm are demonstrated with outdoor GBSAR (Ground Based Synthetic Aperture Radar) experiments, which possesses the same imaging geometry as the airborne forward-looking SAR (short azimuth aperture, wide azimuth swath). The profile response of the trihedral angle reflectors, placed in the OPEN ACCESS Remote Sens. 2013, 5 6064 imaging scene, reconstructed with the proposed imaging algorithm and back projection algorithm are compared and analyzed.
منابع مشابه
Airborne Downward Looking Sparse Linear Array 3-D SAR Heterogeneous Parallel Simulation
The airborne downward looking sparse linear array three dimensional synthetic aperture radar (DLSLA 3-D SAR) operates nadir observation with the along-track synthetic aperture formulated by platform movement and the cross-track synthetic aperture formulated by physical sparse linear array. Considering the lack of DLSLA 3-D SAR data in the current preliminary study stage, it is very important an...
متن کاملImage Formation Using Fast Factorized Backprojection Based on Sub-Aperture and Sub-Image for General Bistatic Forward-Looking SAR with Arbitrary Motion
In this paper, a fast time domain imaging algorithm called bistatic forward-looking fast factorized backprojection algorithm (BF-FFBPA) based on sub-aperture and sub-image is proposed for general bistatic forward-looking synthetic aperture radar (BFSAR) with arbitrary motion. It can not only accurately dispose the large spatial variant range cell migrations and complicated motion errors, but al...
متن کاملRaw Data-Based Motion Compensation for High-Resolution Sliding Spotlight Synthetic Aperture Radar
For accurate motion compensation (MOCO) in airborne synthetic aperture radar (SAR) imaging, a high-precision inertial navigation system (INS) is required. However, an INS is not always precise enough or is sometimes not even included in airborne SAR systems. In this paper, a new, raw, data-based range-invariant motion compensation approach, which can effectively extract the displacements in the...
متن کاملPerformance of the Polar Formatting Algorithm for SAR Image Formation on Wide Aperture Collections
In this paper we describe the performance of the well-known polar formatting algorithm (PFA) for formation of spotlight-mode synthetic aperture imagery from phase history data, under conditions of large-angle synthetic apertures. Such conditions typically occur when the SAR center frequency is low and/or the azimuthal resolution is is very high. Traditional wisdom states that PFA is not desirab...
متن کاملFocusing Translational Variant Bistatic Forward-Looking SAR Data Based on Two-Dimensional Non-Uniform FFT
Forward-looking imaging has extensive potential applications, such as self-navigation and self-landing. By choosing proper geometry, bistatic synthetic aperture radar (BiSAR) can break through the limitations of monostatic SAR on forward-looking imaging and provide possibility of the forwardlooking imaging. In this special bistatic configuration, two problems involving large range cell migratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013